

PRODUCT

Novel method for functional enrichment of T cell pools

INDICATION

GMP-compatible manufacturing of enriched T-cells for cell therapy

VALUE PROPOSITION

- Removes unwanted cell populations from peripheral blood-derived T cells.
- Purifies highly functional populations known to enhance efficacy of engineered CAR T cells.
- Generates an untouched T cell pool via negative selection through multiple defined antigens.
- Compatible with industrystandard, FDA-approved manufacturing methods.

DEVELOPMENT STAGE

In vitro proof of concept established for manufacturing process. Moving towards in vivo efficacy studies.

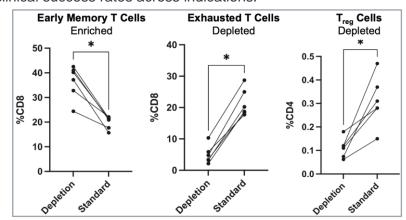
INTELLECTUAL PROPERTY

Patent Pending

CONTACT INFORMATION

Heather Callahan General Manager, Business Development and Licensing callahh@ccf.org 216.379.1226 IDF# 2023-073

Precision Manufacturing of Functionally Enriched CAR T Cells


Inventors: Celine Grégoire, MD, PhD & Jan Joseph Melenhorst, PhD Center for Immunotherapy and Precision Immuno-Oncology (CITI)

UNMET NEED

Isolation of T cells directly from patient and large-scale peripheral blood collections ("aphereses") is the crucial first step in manufacturing cell therapies like CAR T cells. Single-cell technologies demonstrate profound diversity in function of patient T cell pools, which can be modulated by patient demographics, disease type, duration of disease, and pre-treatment disease burden. T-cell intrinsic factors arising from this diversity have been blamed for the limited and heterogenous efficacy of cell therapies. In particular, the persistence of both dysfunctional CD8+ T cells and immunosuppressive regulatory T cells (Treg) within the infused CAR T cell population contribute to treatment failure. FDA-approved cell therapies including BreyanziTM, TecartusTM and KymriahTM rely on manufacturing methods that have not addressed these crucial shortcomings.

SOLUTION

By leveraging the inherent diversity of patient T cells, we have developed a novel enrichment process that yields a pure pool of peripheral blood-derived T cells that is functionally enriched for beneficial phenotypes. Our clinical manufacturing (GMP)-amenable approach relies on combinatorial negative selection against pre-defined cell surface antigens, expressed by undesired cell populations. T cells enriched by our method are themselves untouched by antibodies. facilitating unencumbered manipulation and manufacturing of CAR T cells. Head-to-head comparison with a commercial T cell isolation kit shows that our purified T cells are abundant in naïve and early memory "stem-like" populations that are known to enhance differentiation, proliferative capacity, and sustained anti-tumor activity; concomitantly, our depletion method also removes immunosuppressive Treg and effector and exhausted CD8+ T cells that contribute to treatment failure (see Figure). Our data and significant literature precedent suggest that CAR T and other cell therapies engineered from T-cell pools functionally enriched in this manner will improve clinical success rates across indications.

